Type 2 DM in Adolescents: Use of GLP-1 RA

Ava Mitchell, DNP, FNP-BC
Pediatric Endocrinology
Children's of Alabama

Objectives

• Identify patients in the pediatric population with T2DM that would potentially benefit from the use of GLP-1 RA
• Discuss changes in glycemic outcomes of adolescents patients with T2DM after receiving GLP-1 RA
• Develop a plan for patient-centered care coordination and communication in the management of pediatric patients using GLP-1 RA

Background

• T2DM occurs:
 – Youth second decade of life average age 13.5 years
 – All races, but much higher in non-white Europe descent, Black African, native North American, Hispanic Asian, Native Pacific Islanders
 – Role of obesity
 – T2DM complex, chronic metabolic disease associated with many complications.

Scope of Problem: Obesity

• 36% of 6-11 year-olds
• More than doubled in children and tripled in adolescents in past 30 years
• 15-40% caloric intake comes from junk food
• Soft drinks #1 source of added sugar

Scope of Problem: Burden of Diabetes

• Alabama: highest rate of diagnosed diabetes 10.5%
• Diabetes is the 6th leading cause of death in Alabama
• Most common chronic disease among children in US
• The World Health Organization projects that by 2030 approximately 388 million people worldwide will have the disease (Centers for Disease Control [CDC], 2005)

Pathophysiology of T2DM

• All T2DM have a relative defect in beta cell dysfunction and mass
• Function: newly diagnosed T2DM had on average about 50% of normal beta cell function at diagnosis (Diabetes Res Clinical Practice, 2010)
• Mass: studies comparing volume of beta cells in nondiabetic patients to patients with T2DM found a 41% decrease in beta cell mass in the T2DM patients (Diabetes Res Clinical Practice, 2010)
Pathophysiology of T2DM

- Insulin Resistance
 - Starts early in course of disease
 - Insulin resistance alone will not produce diabetes, beta cell production is normal, patients compensate by increasing insulin secretion

Gastric Emptying Factor

- Many factors can affect the rate of gastric emptying
 - Studies suggest that all other factors being equal, most people with type 1 and T2DM have accelerated gastric emptying compared to non-diabetics

Glucagon Factor

- Glucagon secretion in T2DM is increased
 - Insulin and Glucagon abnormalities produce an excessive postprandial glucose excursion

Treatment of Problem

- Lifestyle modification is first-line therapy
 - Metformin, alone or in combination with insulin, is approved by the FDA to treat T2DM in pediatric patients; many patients remain uncontrolled with these medications
 - Rosiglitazone and glimepiride have also been studied in pediatric patients with T2DM
 - Limited studies exist; however, studies suggest tight control reduces the risk of microvascular complications

What are Incretins?

- Hormones produced by GI tract in response to incoming nutrients and have important actions that contribute to glucose homeostasis
- Two Hormones:
 - Gastric inhibitory polypeptide (GIP)
 - Glucagon-like peptide-1 (GLP-1)

What are Incretins? Glucagon-like Peptide

- 30-amino acid peptide secreted in response to oral ingestion of nutrients by the L-cells in the ileum and colon
 - GLP-1 receptors are located in islet cells, CNS among other places
 - GLP-1 is metabolized by enzyme DPP-IV (dipeptidyl-peptidase-IV)
Actions of GLP-1

- In animal studies, it increases beta cell mass by:
 - Decreasing beta cell apoptosis
 - Stimulating the growth of new beta cells (Diabetes Care, 2003)

- Enhances glucose dependent insulin secretion
- Inhibits glucagon secretion and therefore hepatic glucose production
- Slows gastric emptying
- Increases satiety resulting in less food intake
- Stimulates insulin gene transcription and insulin synthesis

Pharmacologic Action: Target Tissues

- 2005: Byetta - first incretin-related therapy available for patients with T2DM
- 2014: Trulicity approved for treatment of T2DM by FDA

Trulicity

- GLP-1 available for treatment of T2DM for adult population
- One weekly dose can be administered anytime of day, with or without food
- Recommended dose 0.75mg sq q weekly
- May increase dose 1.5 mg

Advantages

- Low rates of hypoglycemia
- Weight loss in some patients
- Effective in controlling PPG
- Once weekly injection
- No PA on Medicaid
Disadvantages

- Nausea, mainly on initiation
- Black Box Warnings
 - Risk of Thyroid C-cell Tumors
 - Contradicted in patients with Multiple Endocrine Neoplasia Syndrome type 2
 - Personal Family History of Medullary Thyroid Carcinoma

Summary

- Insulin resistance and relative insulin secretory defect are key elements in the pathogenesis of T2DM
- GLP-1 deficiency is another key component in diabetic pathophysiology contributing to:
 - Insulin secretory deficit
 - Excess plasma glucagon
 - Postprandial hyperglycemia

Summary

- Incretin mimetics offer a new approach in the management of T2DM
- In addition to improving glycemic control, benefit of weight loss
- Therapies should be undertaken in combination with existing antidiabetic medications and other proven cardiovascular risk reduction strategies

We have to be proactive!
We Have The Tools!